

Optimization Techniques

EXTREME TELEMATICS CORP.

Overview

- ▶ Plunger Cycle
- Pressure Optimization
 - ▶ Casing Pressure
 - ► Casing Line Differential Pressure
 - ► Tubing Pressure
 - ▶ Load Factor
- ▶ Time/Velocity Optimization
 - ► Afterflow
 - ▶ Close
 - ► Close then Afterflow
- ▶ Simulator

The Plunger Cycle

Time/Velocity
Optimizations applied

Check Open
Pressure
Conditions
@ end of Close

Check Close
Pressure
Conditions
After Minimum
Afterflow

Pressure Optimization

Pressure Optimization Basics

- Press install
- Enable devices in Inputs
 - ► Line, Casing, Tubing, Differential, Flow
- Configure device settings
 - Switch, sensor, or virtual
 - ▶ Range
- Turn on optimization in Optimize
 - Set Optimization Type to Pressure/Flow
- Setup optimization options in Optimize
 - ▶ Open and/or Close conditions
 - ► Trip, Reset, Stable Time

Pressure Sensor Behaviour

- Reset
 - ▶ A condition that allows the well to start or continue to flow
- ▶ Trip
 - ► A condition occurs keeps or forces the well to close
- ▶ Stable Time
 - ► The amount of time that must pass when a trip or reset condition occurs before it is acted on

Pressure Sensors

Line Pressure

- Protect the well from back flowing
 - Reset enables flow
 - ► Trip stops flow
- Enable line pressure check per cycle state
- Defaults
 - ▶ Close Enabled
 - ▶ Rise Disabled
 - ▶ Afterflow Enabled

Tubing Pressure

- ▶ Indicates that there is enough pressure in the tubing to flow
- Check tubing pressure at end of close
- Reset on high tubing pressure

Casing Pressure

- ▶ Open
 - ► Check casing pressure at end of close
 - Go to rise after reset point reached

- ► Close Absolute
 - Go to close after trip point reached
- Close Rate of Change
 - ► Go to close if fall rate slows
 - Configurable trip delay

Casing - Line Differential

- Helps deal with line pressure fluctuations
- Ensure a minimum difference before opening
- ► Check CLDP at end of close
- Reset on high CLDP

Load Factor

- Requires Tubing, Line, and Casing
 - ▶ Pressure splitter required
- Load Factor = Fluid Pressure/Lift Pressure
 - ► Fluid Pressure = Casing Tubing
 - ► Lift Pressure = Casing Line
- Check load factor at end of close
- Reset on falling load factor

Flow Differential Pressure

- Measure differential across orifice plate
- Proportional to flow
- ▶ Check DP during afterflow
- ► Trip on low DP

Flow Rate

- Use differential pressure and line pressure to calculate flow
- Other settings required
 - ▶ Temp
 - Density
 - ▶ Meter run size
 - Orifice plate size
- ► AGA 3 table lookup (Not custody transfer compliant)
- Check flow during afterflow
- ▶ Trip on low flow rate

Time/Velocity Optimization

Time/Velocity Optimization

Goal

- Modify system parameters to influence the plunger to arrive at a given velocity.
- ▶ Velocity must be slow enough to be safe, but fast enough to lift fluid.
- Overview
 - ► Each fast or slow plunger arrival causes a **proportional** adjustment to either the afterflow or close time.
- Assumption
 - Velocity of plunger is dependent on the amount of fluid being brought to surface

Plunger Arrival Sensor

Time/Velocity Optimization Basics

- Modify afterflow or close based on plunger arrival time/velocity
 - ▶ Min sets the lower bounds
 - Max sets the upper bound
- ▶ Rise time is the arrival window
- Target rise is the desired arrival time
- Actual rise time compared and the miss represented as percentage
 - ▶ i.e. 10 min target and 1 min early is a 10% miss.

Arrival Time Optimization - Afterflow

Algorithm:

$$\Delta Afterflow = \frac{Rise_{Target} - Rise_{Actual}}{Rise_{Target}} \cdot S \cdot Afterflow$$

Afterflow = Afterflow Time

Rise = Rise Time

S = Scale Factor

- Fast plunger adds to Afterflow Time
- Slow plunger subtracts from Afterflow Time
- Changes proportional to:
 - magnitude of the miss
 - Amount of current Afterflow time
- Scale Factor used to dampen the response

Arrival Time Optimization - Close

Algorithm:

$$\Delta Close = \frac{Rise_{Actual} - Rise_{Target}}{Rise_{Target}} \cdot S \cdot Close$$

Close = Close Time

Rise = Rise Time

S = Scale Factor

- Fast plunger subtracts from Close Time
- Slow plunger adds to Close Time
- Changes proportional to:
 - magnitude of the miss
 - Amount of current Close time
- Scale Factor used to dampen the response

Close Then Afterflow

 Close Time is minimized as well is unloaded and plunger arrives faster than the target Maximum Close

- Then Afterflow Time is maximized to increase production while plunger is still arriving faster than target
- ► Slow plunger reduces Afterflow Time. If Afterflow Time at minimum, Close Time is increased
- ► Fast plunger reduces close once again. If close is at the minimum, Afterflow Time is increased
- ► This is a dynamic system that responds to changing conditions and does not require operator intervention

Minimum Close (Fall Time) Maximum Afterflow 200

Optimization Algorithm Results

Velocity Optimization

Algorithm:

$$\Delta AF_{Time} = \frac{V_{Actual} - V_{Target}}{V_{Target}} \cdot S \cdot AF_{Time}$$

AF = Afterflow

V = Velocity

S = Scale Factor

- Based on arrival time optimization
- Safety factor can be reduced to increase production
- Proportionally adjust afterflow and close times based on instantaneous surface velocity
- Makes small corrections on each run instead of trying to stop a dangerously fast plunger

Simulator

Port Disconnected

Peak production with minimal

operator intervention.

www.ETCorp.ca

