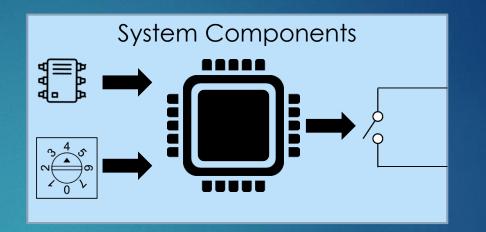
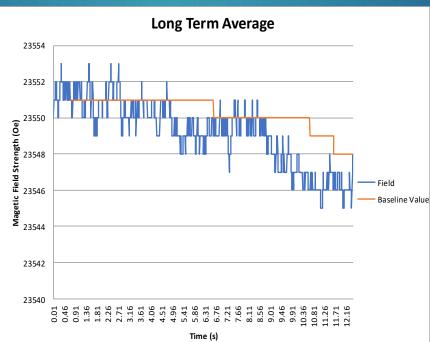
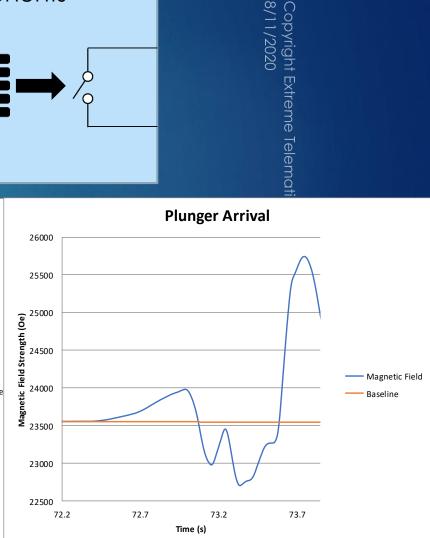
Getting Started with Cyclops/Sasquatch EXTREME TELEMATICS CORP.

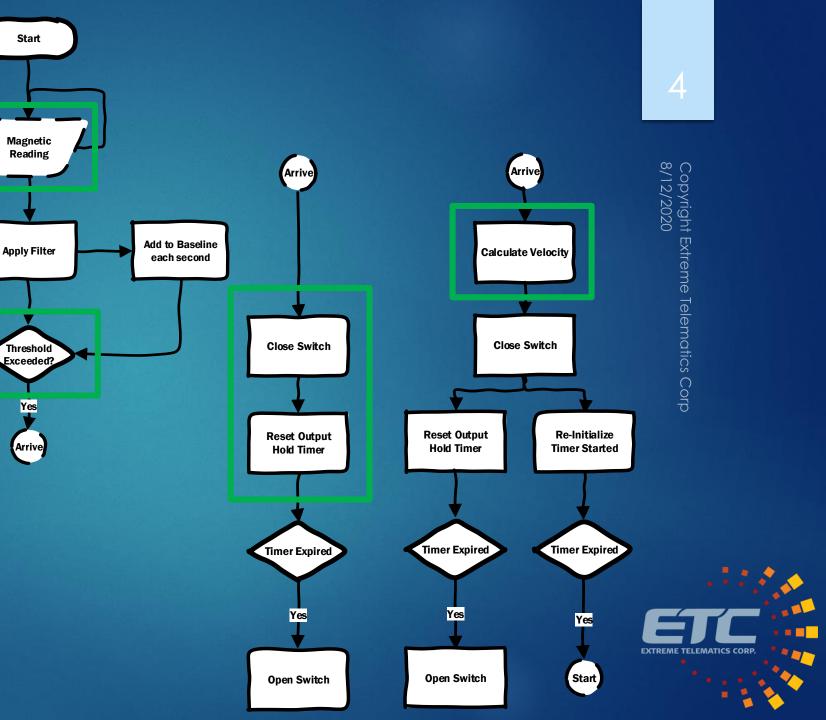

Overview


- Principle of Operation
- Adjusting Sensitivity
- Model Comparison
- Mounting
- Physical Connections
- Connecting to RTUs/PLCs
- Using Modbus with Sasquatch
- Kinetic Energy Monitoring
- ► Live Demo

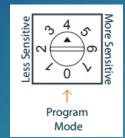


Principle of Operation

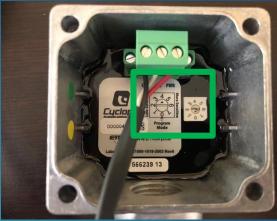
- Main components
 - Magnetometer
 - Sensitivity Dial
 - Microprocessor
 - Digital Switch
- The basics
 - ► Filter out noise
 - Baseline = long term average
 - Look for deviation
 - Close switch on arrival



3


Operation

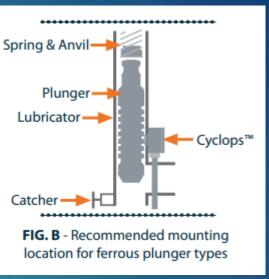

- Read samples
 - Cyclops 10 ms
 - Sasquatch 1 ms
- ► Filter noise
 - ► 3 samples
- Establish baseline
 - ▶ 8 x 1 sec samples
- Compare to baseline
- Arrived if Threshold Exceeded
 - Calculate Velocity (Sasquatch)
 - Set and hold switch
 - ► Cyclops 5s, 30s, 60s, 90s
 - ► Sasquatch 1s, Configurable
 - Open switch on Hold Timer expiry
 - Re-Initialize (Sasquatch)

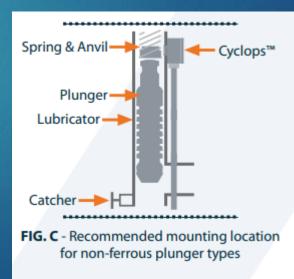

Adjusting Sensitivity

- Sensitivity Dial
 - Default is 4
 - ▶ 1 = Min Sensitivity
 - 7 = Max Sensitivity
 - \blacktriangleright 0 = Program Mode
 - ► Use Vision to increase
- Real Time Capture in Vision
 - Blue = Filtered Samples
 - ► Green = Baseline
 - Switch setting
 - Red Dots = Threshold
 - Bar for showing trip level

- Samples A - Baseline A • Threshold - Samples B - Baseline B

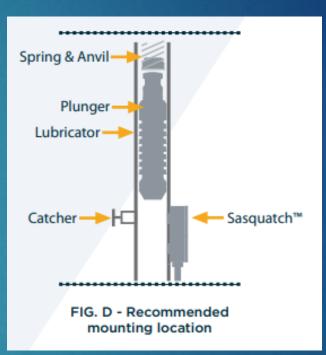
Model Comparison

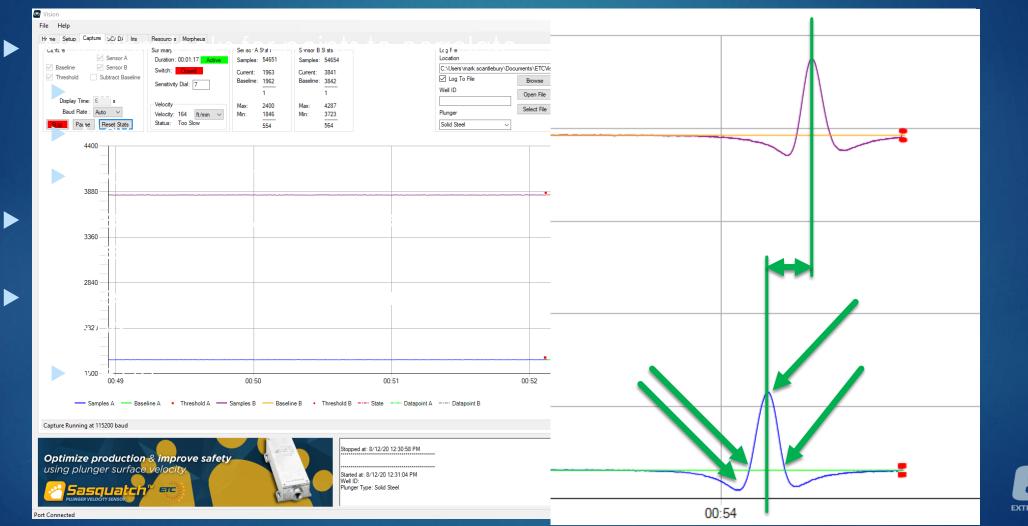



Model	Cyclops ExP	Cyclops IS	Sasquatch
Operating Temp	-40°F to +160°F (-40°C to + 70°C)		
Operating Voltage	5V to 24V		
Current Draw	0.80 mA		8 mA
Detects	Plunger Arrival		Plunger Arrival and Velocity
Sample Frequency	10 ms		1 ms
Switch Interface	Dry Contact, Normally Open, 100 Ohm Impedance		
Comms Interface	1 wire RS-485 Debug Interface		2 wire RS-485 Modbus Slave
Certification	Class I Div 1/Zone 1 Explosion Proof	Class I, Div 1/Zone 0 Intrinsically Safe Class I, Div 2/Zone 2 Non-Incendive	

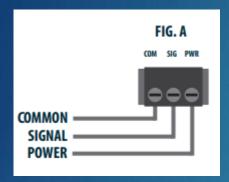
Mounting: Cyclops

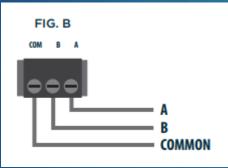
- Use provided band clamp(s) to strap sensor to lubrice
- Detects movement of ferrous metal
- Ferrous Plunger
 - At resting point of plunger
 - On Casing/Master Valve
 - Can detect plungers multiple feet away
- Non-Ferrous Plunger
 - Mount near anvil/spring
 - Detects movement of anvil as plunger is invisible
 - Can mount near trigger rod end for 2-piece
 - ► Less reliable




Mounting: Sasquatch

- Use provided band clamps to strap sensor to lubricator
- Only works with Ferrous Plungers
 - Must see the magnetic waveform shift over time
- Plunger must travel by the sensor
 - Mount as low as possible
- Bounce back of plunger can skew results


Sasquatch Capture Example


Copyright Extreme Telematics Corp 8/12/2020

Physical Connections

- Power and Signal
 - ► COM Ground
 - SIG Dry Contact Output
 - PWR Supply Voltage

- COM 1 (Sasquatch Only)
 COM Ground
 - ► A/B 2 Wire RS-485

Copyright Extreme Telematics Corp 8/11/2020

Connecting to RTUs/PLCs with Voltage Input

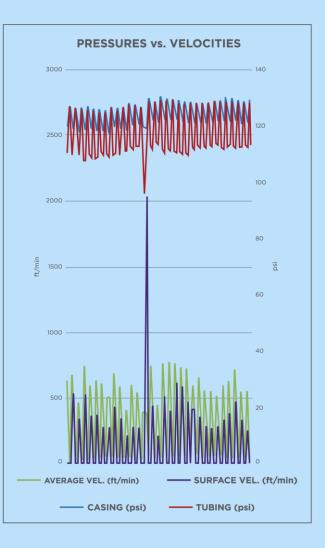
- Dry Contact Input
 - ALiEn2 and other Plunger Controllers
 - Internal Pull Up Resistor in Controller
 - Normally Open Switch
 - Arrival connects SIG to COM
- Voltage Input
 - Typical of RTUs and PLCs
 - Needs to see High or Low Voltage
 - Open switch = Undefined
 - Use pull up to power

11

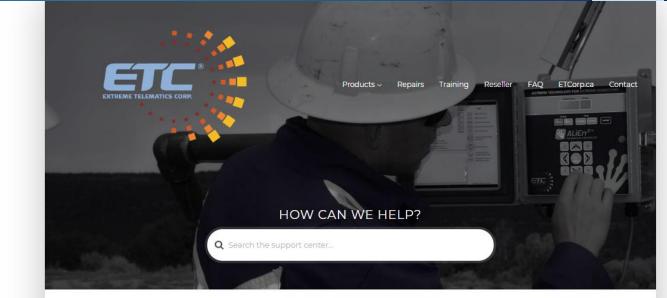
V EXTREME TELEMATICS CORP.

Using Modbus with Sasquatch

- COM Port
 - ► RS-485
 - Default is 9600 8N1
- Sensitivity Dial
 - 0 = Program Mode, Commands and Firmware from Vision
 - ▶ 1 7 = Operational Mode, Modbus Slave
- ► Key Registers
 - ▶ Date and Time (4:0002 4:0007)
 - Arrival Log (FIFO)
 - ► Arrival Time (3:0102 3:0107)
 - ► Velocity (3:0822)
 - ► Confidence Code (3:0942)
 - ► Kinetic Energy (3:1062) Requires Plunger Mass


승규님은 모두 많이 많이	Φ
Code	Description
1 - 8	Number of data points used to calculate velocity
20	Velocity Under Range
21	Velocity Over Range
22	Waveform Sync Failure
23	False Arrival

Copyright 1 8/11/2020


Kinetic Energy (KE)

- Should be at SCADA system level
 - Implemented in Sasquatch
- Program in Plunger Mass
- ► KE Calculated on each arrival
 - ► KE = $\frac{1}{2}$ mv²
- ► Alarms
 - ► Single Dangerous Hit
 - Consecutive Hard Hits
 - Cumulative Long Term

Support Center

- ► <u>Go To Support Center</u>
- Ask a question
- Access Training Programs
- Product Resources
 - Documentation
 - ► Tools
 - ► Accessories
 - Replacement Parts
- Submit an RMA
- Submit a Ticket

POPULAR HELP TOPICS

MAINTENANCE

- Articles related to maintenance of ETC products.
- How do I charge the ALiEn2/ALiEn2 Expert plunger lift controller battery?
- What is considered a low battery?
- What if my battery has no voltage?

TROUBLESHOOTING

What battery can I use in the ALiEn2/ALiEn2 Expert plunger lift controller?

a trouble? Check out these articles to find resolutions to the most common issue

• What do I do if my solenoid does not seal?

POPULAR ARTICLES

How do I submit an RMA to repair my ETC controller or sensor?

Is there a software simulator for the ALIEn2/ALIEn2 Expert?

What is considered a low battery?

How do I use the ALiEn2/ALiEn2 Expert to switch an electric valve or signal an alarm?

How do I charge the ALiEn2/ALiEn2 Expert plunger lift controller battery?

How do I connect to an ETC controller or sensor in Vision?

How do I see what the Cyclops/Sasquatch sees in real time using Vision?

How do I upgrade the firmware on ALiEn2/ALiEn2 Expert?

About ETC EXTREME TELEMATICS CORP.

15

Since 2001, ETC has specialized in low power, wide temperature range, hazardous locations approved electronics for the oilfield.

> <u>Devices Sold</u> 12,000 Controllers 60,000 Sensors

Mission

- ► To democratize industrial automation
- Core Values
 - Honesty and Integrity
 - Value Creation
 - Innovation
 - Collaboration
 - Empowered Employees
- ► Learn more
 - https://etcorp.ca/about-us/

Telematics Corp